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Sayre's equations give a set of relationships that exist among the structure

factors of an equal-atom structure. In order to obtain the correct phases of the

structure factors, a genetic algorithm is used to minimize a least-squares residual

of Sayre's equations. In the genetic algorithm, a phase is treated as a gene and

the whole set of phases is considered as a chromosome. Every chromosome is

relaxed to a nearby local minimum by quenching after being produced from a

previous generation. Trial calculations for a structure containing 92 non-H equal

atoms with synthetic data and another structure containing 62 non-H equal

atoms with real data are presented. Compared to simulated annealing, a genetic

algorithm is a more ef®cient means of global optimization.

1. Introduction

X-ray diffraction is one of the most useful tools for crystal

structure determination. If the amplitudes and phases of X-ray

diffractions can be found, the electron density can be calcu-

lated through a Fourier transform directly. In practice,

experiments give only the amplitudes without their phases.

The recovery of the phases is termed the `phase problem' and

is a major research topic in crystallography. Pioneered by

Hauptman & Karle (1953), direct methods determine the

phases from the diffraction amplitudes. By formulating the

phase problem as a global minimization problem, simulated

annealing (Kirkpatrick et al., 1983) has been employed in a

series of papers (Su, 1995; Chen & Su, 2000; Liu & Su, 2000)

for structural determination. Among those methods, Chen &

Su (2000) have used one that solves Sayre's equations (Sayre,

1952) by simulated annealing.

It is well known that a genetic algorithm (Goldberg, 1989) is

in general a better technique of global optimization (Horst &

Pardalos, 1995) than simulated annealing. First proposed by

Holland (1975), the genetic algorithm belongs to a new

generation of intelligent global optimization techniques. It has

been applied to numerous problems (Lopez et al., 2000; Chu &

Chu, 2001; Grigorenko et al., 2002) including the optimization

of the atomic structures of small clusters (Deaven & Ho, 1995;

Rata et al., 2000; Garzon et al., 1998; Lemes et al., 2002; Zeiri,

1995). Its role in solving the phase problem has been largely

unexplored. To date, there exist only two rather specialized

applications. Landree et al. (1997) have used a multi-solution

genetic algorithm to solve simple surface structures from very

noisy and incomplete diffraction data. Webster & Hilgenfeld

(2001) have used a different version of the genetic algorithm

to reconstruct approximate envelopes of two protein struc-

tures. It would be desirable to extend the methodology to treat

a general structure.

In this work, a least-squares residual of Sayre's equations is

used to represent the ®tness of a trial phase set with respect to

the true phase set. For centrosymmetric structures, a phase is

either 0 or � and can be easily represented by one bit (gene).

A structure can be represented by encoding its phase set into a

string of bits (genes) called a chromosome. A genetic algor-

ithm is then used to ®nd the ®ttest chromosome. After that, we

use Fourier transform and real-space peak-picking to obtain

the atomic coordinates of the structure.

An important ingredient of our algorithm is that we

perform a relaxation immediately after every chromosome is

created. This greatly improves the ef®ciency of the algorithm,

since the relaxation signi®cantly reduces the sample space and

simpli®es the landscape.

Compared to Chen & Su's (2000) work, the genetic algor-

ithm gives better performance than simulated annealing in

solving the Sayre equations. It can also handle real experi-

mental data, as shown in our 62 non-H-atom structure

example.

2. Methodology

2.1. Sayre's equations

A crystal structure that is composed of equal atoms has an

electron-density function ��x� composed of identical and

resolved peaks. For such a structure, the function ��x� and its

square �2�x� are almost alike, except that the peaks have

different shapes. If the atomic shape is known, the structure

factor Fsq�h� of the squared structure can be expressed in

terms of the structure factor F�h� of the original structure as

Fsq�h� � S�h�F�h�; �1�

where S�h� is the appropriate function to account for the

change of atomic shape.



According to Fourier theory, multiplication in real space is

equivalent to convolution in Fourier space. Therefore, we have

Fsq�h� � �1=v�P
k

F�k�F�hÿ k�; �2�

where v is the volume of the crystal unit cell in AÊ 3.

It follows that the structure factors satisfy the relations

vS�h�F�h� �P
k

F�k�F�hÿ k�: �3�

This equation is true for all h, and is called a Sayre equation.

For organic crystals, all atoms are alike except H atoms, which

can be ignored for their small contribution to the electron

density. A set of phases can be correct only if it satis®es all

Sayre's equations for all h. A least-squares residual for Sayre's

equations is

R �P
h

jvS�h�F�h� ÿP
k

F�k�F�hÿ k�j2 �4�

and the minimization of the residual yields the correct phase

set.

2.2. Genetic algorithm

Within this formulation, the phase problem is converted

into a global optimization problem. It is very complicated

owing to high nonlinearity and the large number of degrees of

freedom. Therefore, we use a well known global search

method: the genetic algorithm (GA). What are GAs? GAs are

search algorithms based on the mechanics of natural selection

and natural genetics. First, an initial population of candidate

solutions is introduced and the ®tness of each individual of

the population is calculated. Then, the population produces

offspring to form a new population, according to the rule that

®tter individuals have a better chance to produce offspring.

Generally, the average ®tness of the child generation is better

than the parent generation. We repeat this procedure until a

global minimum is found.

Coming back to our problem of centrosymmetric structures,

a structure can be represented by encoding its phase set into a

string of bits (genes) called a chromosome. Initial generation is

composed of chromosomes with randomly generated phases

and their ®tness is calculated according to equation (4). The

lower the residual, the ®tter the chromosome is. It is important

to point out that, in practice, we do not have the complete set

of structure factors, so we must compensate for the omission

of terms in equation (3) by multiplying the left-hand side by an

empirical factor of the form pÿ qjhj ÿ rjhj2. It is found that

the best values of p, q and r depend on the amount and type

of data incompleteness, but are independent of the structure

(Sayre, 1972).

Reproduction of a generation is performed mainly by three

operations: direct copy, crossover and mutation. The parents

are ®rst selected with a probability function in terms of their

®tness. A chromosome is ®rst picked up randomly, and then its

probability of being a parent is calculated as

P � Rÿ Rthres

Rmin ÿ Rthres

�P � 0 for R>Rthres�; �5�

where Rthres � 2Rave ÿ Rmin, Rmin and Rave are the minimum

and average residual of the generation, respectively.

After a parent is selected, it is directly copied into a mating

pool for further genetic operations. When we have enough

parents, simple crossover is performed in two steps. First, two

members are selected from the mating pool randomly. Second,

a crossover position is selected uniformly at random, and the

two parents interchange all the genes on one side of the

position. After crossover, random sites are selected and the

genes at those sites are ¯ipped (i.e. 0! 1, 1! 0). This is

called a mutation.

In addition to the above basic operations, we also use some

advanced operations to make the algorithm more ef®cient.

One problem with an ordinary genetic algorithm is that

sometimes a rather good solution in the old generation is lost

in the new generation. To prevent that from happening, we

keep our best solutions by directly copying them into the next

generation (elitism). Another problem is premature conver-

gence, which means most of the population becomes similar

before it ®nds its real optimum. We use a technique called

niche to overcome this problem. Niche is a ®tness sharing

mechanism. Since we do not want the individuals in a popu-

lation to resemble each other, we penalize highly similar

individuals by arti®cially increasing their residuals.

First, a sharing function s�i; j� is de®ned as

s�i; j� � 1ÿ d�i; j�=0:4 if d�i; j� � 0:4
0 if d�i; j� > 0:4,

�
�6�

where d�i; j�, the distance, is the percentage of distinct phases

between two individuals. By this de®nition, only neighbors

within a distance of 0.4 have non-zero sharing function values.

Then, for a given individual, the degree of sharing is obtained

by summing the sharing function over all individuals. Finally,

the individual's modi®ed residual is calculated through

Rmod�i� �
R�i� ÿ RthresP

j s�i; j� � Rthres; �7�

where Rmod is the modi®ed residual and the summation is over

all the individuals. In this way, highly similar individuals

have less chance of being reproduced, therefore premature

convergence is prevented or at least slowed.

An important ingredient of our algorithm is relaxation. It is

performed immediately after a chromosome is created. To

understand the advantage of relaxation, we must introduce the

concept of a schema ®rst. A schema is a similarity template

describing a set of genes at certain positions. In our case, a

schema is a set of phase combinations. A GA is effective

because it increases crucial schemata exponentially after they

appear. Relaxation can produce such schemata quickly and

effectively because it brings a chromosome into a nearby local

minimum, which means some phase combinations are correct.

This saves a lot of time for the algorithm to explore and ®nd

good schemata, and therefore makes the algorithm more

ef®cient. In our problem, the large number of parameters (i.e.

926 parameters for the 62 atom case) makes the appearance of

a correct schema very dif®cult in a typical GA. We have to
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depend on those local minimum patterns produced in

relaxation, otherwise the problem will be too dif®cult to solve.

Relaxation is done by quenching, a simulated-annealing

procedure (Press et al., 1992) at zero annealing temperature

T � 0. A random site is ¯ipped and kept that way only if the

residual decreases. Otherwise, it is ¯ipped back. This process is

continued until a local minimum is found and no more ¯ips

can decrease the residual.

3. Examples

In order to test the feasibility and ef®ciency of our approach,

we choose two medium-sized molecules with centrosymmetric

crystal structures. The ®rst structure is tetraundecyl-

pentacyclooctacosadodecaenoctol teraethanol solvate

(C72H112O8 �4C2H6O), with space group P1, and unit-cell

dimensions a � 12:533, b � 12:649, c � 25:319 AÊ , � � 84:79,

� � 80:74,  � 83:84� (Hibbs et al., 1998) (Fig. 1). This

structure contains 92 non-H atoms. Synthetic data are fabri-

cated by modeling every atom as a Gaussian ball with density

exp�ÿ�r=a0�2�, where a0 � 0:5 AÊ . The strongest 1291 inde-

pendent re¯ections are selected from the synthetic data of 1 AÊ

resolution. This data set contains only a small fraction of the

total number of re¯ections. As mentioned previously, we have

to compensate for the omission of terms by using an empirical

factor of the form pÿ qjhj ÿ rjhj2. An arti®cial structure with

similar data incompleteness and with the same unit-cell

parameters and chemical formula is used to calculate p, q and

r. In this example, they are 0.536, 0.281 and ÿ0.073, respec-

tively.

An initial population of 50 randomly generated chromo-

somes started the evolution procedure. The probabilities of

crossover and mutation were set to 60% and 1%, respectively.

After 12 trials, each taking an average of 4 h CPU on a

Pentium 2 GHz machine, we obtained three correct structures.

The success ratio is about 25%. Fig. 2 shows the average and

minimum residuals of evolving generations of typical

successful and unsuccessful trials. One can see that the

successful process exhibits a sudden drop in the minimum

residual curve before the end of the evolution, in contrast to

the unsuccessful ones.

What is the origin of the sudden drops that distinguish

successful trials from failed ones? Let us examine the solution

hyperspace ®rst. Our solution hyperspace resides in 1288

dimensions (three of the dimensions are pre-assigned to de®ne

the origin). Although in every dimension there are only two

valid values (0 and 1), the whole con®guration space is still

astronomically large (21288). It is like ®nding a golf hole in a

very large golf course without any sign or indication. A typical

GA will give a rather smoothly evolving curve, because the

GA is very good for exploration but not for re®nement. We

have found that our relaxation operation helps a typical GA to

do the re®ning job; without the relaxation, the GA either

converges very slowly or does not converge at all. In other

words, a typical GA's job is to explore the golf course and ®nd

a good candidate neighborhood, and relaxation is used to ®nd

the lowest point in such a neighborhood. For a successful run,

the sudden drop indicates the relaxation operation ®nding a

rather deep hole. Whether this is the global minimum needs to

be checked further. This can be done by performing a Fourier

transform to obtain the electron-density map. In this case,

Figure 1
Stereodrawing of the molecular structure of the ®rst example.

Figure 2
(a) A typical residual curve of an unsuccessful trial. The curves are
smooth without a sudden drop. (b) A successful trial gives a sudden drop
in the minimum residual curve. The smoothness of the average curve
indicates the population has not converged.



98% of the 1288 re¯ections have the correct phases and the

density map is rather accurate and makes chemical sense, as

shown in Fig. 3. Further peak-picking and re®nement can be

done routinely to yield the accurate atomic coordinates and is

not discussed here.

To illustrate the evolution progress, we show in Fig. 4(a) the

detailed population distribution of a successful trial in every

generation. Compared to a trial without the niche option, as

shown in Fig. 4(b), we see that premature convergence is

successfully avoided.

In order to further test the robustness of our algorithm, we

use real diffraction data in the second trial calculation. The

structure is 1,1,1-tris(4-hydroxyphenyl)ethane-1,4,8,11-tetra-

azacyclotetradecane±methanol (C20H18O3)2 �C10H24N4 �
CH4O, with space group P1 and unit-cell dimensions

a � 8:221, b � 16:245, c � 17:337 AÊ , � � 81:694, � � 89:656,

 � 86:468� (Ferguson et al., 1998) (Fig. 5). This structure

contains 62 non-H atoms. The strongest 926 re¯ections were

selected from the 8108 experimental ones, for which h ranges

from ÿ10 to 10, k from 0 to 10 and l fromÿ10 to 22. p, q, r are

calculated to be 0.557, ÿ0.048 and 0.358, respectively. As in

the previous example, the p, q, r are obtained from a random

structure with identical lattice parameters and chemical

formula. In addition, the atomic scattering factors listed in

International Tables for X-ray Crystallography (Cromer &

Waber, 1974) are used since real diffraction data are consid-

ered here. Using the same setting for parameters as in the ®rst

example, we obtained two correct structures after ten trials,

each taking an average of 3 h CPU. The success ratio is thus

about 20%. The evolution curves for successful and unsuc-

cessful trials show similar properties to the previous example.

Since the real experimental data contains more errors, the

average time required to ®nd a correct answer for this smaller

structure is about the same as that of the previous example.
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Figure 3
Stereodrawing of the calculated density map superimposed on the true
structure in one unit cell. They match very well.

Figure 4
(a) The detailed population distribution of every generation in the
successful trial. In this ®gure, at generation 11, an individual becomes
obviously better and begins to attract more individuals to its neighbor-
hood. Thanks to the niche method, this neighborhood is not over-
crowded. The group of individuals continues to search its nearby areas for
several generations and ®nds a much better con®guration at generation
23. Finally, the group reaches the global optimum at generation 29.
Convergence is successfully prevented in this process. (b) The detailed
population distribution in a trial without the niche option. The population
converges prematurely after only 15 generations.

Figure 5
Stereodrawing of the molecular structure of the second example.
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4. Discussion

In summary, we have developed a new method to solve the

phase problem. Although we only present the results for

centrosymmetric structures, it is not too hard to extend the

method to other symmetry groups. In this method, the phase

problem is formulated as a global minimization problem

related to Sayre's equations, and the genetic algorithm is

employed to ®nd the global minimum. It is easy to understand

in concept and very straightforward to implement. In this

genetic algorithm, niche, a ®tness sharing mechanism, is used

to prevent premature convergence. Relaxation, which is not

typical in a genetic algorithm, is used in our algorithm for

its ability to signi®cantly reduce the con®guration space.

Compared to simulated annealing, our method is much more

ef®cient. It has a success ratio of about 20±25%, compared to

2±3% in the simulated-annealing case. It also requires much

less computer time, less than 20% of the time required for a

simulated-annealing procedure. Compared to modern direct

methods such as the Shake-and-Bake method (Weeks &

Miller, 1999) and the SHELXS program (Sheldrick, 1990),

which can solve most structures with under 100 non-H atoms

in minutes, the GA approach is still two orders of magnitude

slower. However, as a new methodology, the speed might

improve with time and it might solve structures not solvable by

other means. Following Sayre's (1974) work, our method

might be useful for re®ning high-resolution protein structures.

To further improve our algorithm, various modi®cations

may be applied to solve larger structures and to achieve a

better success ratio. For instance, selected initial population

may be used instead of a random one. This may save us some

time because some schemata may already exist in the selected

initial population. This can be done by using a real-space

approach ®rst to ®nd an approximate density map and then

performing a Fourier transform to get an initial phase set.

Further premature convergence prevention techniques can

also be tried to improve the success ratio.
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